

Silvana Radu

M.S. Uludag, S. Speretta, N. Foteinakis, J. Bouwmeester

- 1. Delft University of Technology AE SE
- 2. The PocketQube Standard

- 4. Delfi-PQ: Operational modes
- 5. Testing
- 6. Launch
- 7. Future Work

Figure 1: First assembly Delfi-PQ

TUDelft Space Engineering department

Contact Person: Dr. Prof. Eberhard Gill (E.K.A.Gill@tudelft.nl)

What are we researching (@Space Systems Engineering chair)?

- ✓ Miniaturization of Space Systems (Satellites, Thrusters, ADCS, etc);
- ✓ Distributed Space Systems;

Past, present and future projects (highlights):

Delfi Program (2005-present)

- ✓ DelfiC3 (in space and operational for 10 years)
- ✓ Delfi N3xt
- ✓ Delfi-PQ

TUDelft Space Engineering department

Past, present and future projects (highlights):

Delfi Program (2005-present)

TUDelft Space Engineering department

Lumio (12U Lunar CubeSat)

Study the micrometeoroids impacting the far side of the Moon and contributing to Lunar Situational Awareness.

Contact Person: Dr. Angelo Cervone (a.cervone@tudelft.nl)

TUDelft Space Engineering department

Brik-II (Dutch Airforce, TU Delft, NLR, Innovative Solutions In Space)

- √ 6U CubeSat;
- ✓ Expected time in space: 3y;
- ✓ Orbit Period 90 min;
- ✓ Detecting radio waves from sources (radar installations);
- √ Study Earth's ionosphere;
- ✓ Digital mailbox;
- ✓ Acquire knowledge space military applications;

What is a PocketQube?

- ✓ Idea of Prof. R.J. Twiggs (collaboration MSU & Kentucky Space);
- ✓ Represents one eight of a CubeSat in volume;
- ✓ One unit (1P) Consists of roughly 50x50x50 mm;

Figure 2 Photo credit: Alba Orbital

Why was the PocketQube Standard needed?

- ✓ Some specifications were initially defined, however a complete definition was missing;
- ✓ To reach common numbers (specifically exterior dimensions);
- ✓ To facilitate the development of PocketQubes;
- ✓ To assure the developed PocketQubes are compatible with the current Launch Service Providers (Alba Orbital & Gauss Srl.);
- √ To enlarge launching opportunities for PocketQubes;
- ✓ To contribute to the growth of the PocketQube community.

PocketQube Standard – Issue 1^[1]:

- √ General Requirements
- ✓ Mechanical Requirements (Exterior dimensions, Mass, Materials)
- ✓ Kill switches locations, minimum contact surface.

Number of Units (P)	External dimensions without backplate (mm)	Sliding backplate dimension (mm)
1P	50x50x50	58x64x1.6
2P	50x50x114	58x128x1.6
3P	50x50x178	58x192x1.6

Figure 3. Delfi-PQ – 3P

PocketQube 3P

Number of Units (P)	Mass (g)
1P	250
2P	500
3P	750

As described in [1], envelope is as it follows:

more than 7 mm components.

NO more than 10 mm for appendages if the LSP can adapt to this req. In order to comply to this, a waiver is attached in [1]. The waiver provides the relevant dimensions not to be exceeded.

Figure 4. Envelope and Allowable Additional envelope for deployables

- ✓ Kill switches shall be located only on Z- axis. There are two different possible placement areas:
- 1. Lateral side within 20 mm from Z- faces and touching the deployment rails (see figure lateral green area);
- 2. Aligned with the sliding backplate in Z- face in contact with the PocketQube below or the pusher plate (see figure blue area).
- ✓ Minimum contact surface of the PocketQube backplate hall be 21.5 mm from both sides on the Z+ axis (see figure red area),

Figure 5. Kill switches location

Figure 6. Min. contact surface

PocketQube Standard – Issue 2 (To Be Continued):

As part of the same collaboration involved in [1] – Alba Orbital, TU Delft and GAUSS Srl:

- ✓ Electrical requirements
- ✓ Operational Requirements
- ✓ Testing Requirements

The first PocketQube of Delft University of Technology – Delfi-PQ

Contact Person: Silvana Radu (s.radu@tudelft.nl)

Delfi Program:

- 1. Education:
 - Pass know-how to students;
 - Long-term goal have students experiencing end-to-end development of components/subsystems;
- 2. Technology Demonstration:
 - Demonstrate payloads developed by faculty teams or other partners;
- 3. Innovation
 - Constellations for radio applications (radar calibration, optical reflector,etc.);

Target of first PocketQube: demonstrate a reliable core bus platform that can fit in 1P and test the overall integrity of the structure of this form factor.

Antenna:

- ✓ UHF and VHF (downlink/uplink);
- √ Omnidirectional radiation pattern;
- ✓ Configuration dipole with linear polarization
- ✓ Deployment consists of 6 components manufactured and assembled in house (As presented in the animation on the right).

Radio:

- ✓ Main board (hosting the modulation and demodulation)
- ✓ RF front-end (hosting the power amplifier and low noise amplifier)
- ✓ Approach selected to allow the system to operate in different bands Full-duplex over 2 separated bands (UHF downlink and VHF uplink)

Figure 3. Antenna Board

Figure 4. Radio Board

Electrical Power System:

- ✓ Battery board (2 batteries of 3.7 V)
- ✓ Main EPS board (due to limited space, MPPTS were added on each solar panel)
- √ Solar Panels

On-Board Computer:

- ✓ MSP432 microcontroller;
- √ Operational modes;

Figure 7. OBC

Figure 5. Battery and EPS Board

Figure 6. Solar Panel

ADCS:

- √ Three magnetorquers
- √ Two IMU
- ✓ Stabilizing the satellite from a max. rotational speed of 180deg/s

Potential Payloads (depending on TRL):

- a) Thermal Payload (heat source, power sinked to another component with sufficient heat capacity);
- ✓ Temperatures measured in various locations determine heat flow;
- ✓ Additional battery board might be added.

Figure 8. ADCS

Figure 9. Magnetorquers

Potential Payloads

- b) Micro-propulsion:
- ✓ Developed in-house by micro-propulsion team;
- ✓ Micro-resistojet-vaporization of pressurized liquid water and free molecular acceleration of propellant molecules stored at low pressure.
- ✓ Mass 75 g, volume (42x42x30 mm), max power 4 W.
- c) GPS (already part of Delfi-PQ1):
- ✓ Receiver based on commercial dualfrequency hardware with modified firmware.
- d) Radio experiment:
- ✓ Test protocols and schemes not designed for satellite use and estimate in-flight performances.

Figure 10. Micro-propulsion system

3. Delfi-PQ: Operational modes

Aim for first PocketQube of TU Delft: keep the functionality as simple as possible:

OFF Mode:

 Satellite turned off until the kill switches get unpressed and satellite is powered.

Activation Mode:

- Limited subsystems are on;
- The purpose is to determine if it is the first time the satellite activates.

Deployment Mode:

- Determine if antennas were deployed;
- Deploy antennas or force deployment;

9		OFF	Activation	Deployment	Safe	ADCS	Nominal
k	EPS	Off	On	<mark>On</mark>	On	On	On
	OBC	Off	<u>On</u>	<mark>On</mark>	On	On	<mark>On</mark>
9	СОММЅ	Off	Receive	Receive	Rece ive/ transcie ve	Receiv e/ transciev e	Receive/ transcieve
9	Mech	Off	ldle	Deployment	Idle	ldle	ldle
9	ADCS	Off	Off	Off	Off	On	Sensing

3. Delfi-PQ: Operational modes

Safe Mode:

 Satellite automatically switches to safe when certain trigger parameters are flagged;

- Drop of voltage parameters;
- Other failures;

ADCS Mode:

- Sensing
- Actuating (up until 5deg/s rotational speed)

Nominal Mode:

- Perform general tasks (check and execute commands, collect and store telemetry, send telemetry, ADCS sensing);
- Payload;

Figure 11. Boot Sequence

Boot Sequence loop explain the modes in which the satellite needs to pass before reaching nominal mode, after a general reset was performed.

4. Testing

Subsystem Level Testing:

- ✓ Use of a FlatSat
- ✓ Check all electrical connections;
- ✓ Check all communications between components;
- ✓ Check overall system and perform duration test before integration.

Figure 12. FlatSat of Delfi-PQ

Environmental Testing:

✓ Previously used ranges in CubeSat missions were used for Qualification and Acceptance;

Type of Test	Qualification	Acceptance		
Random vibration	Required	Required		
Sinusoidal vibration	Required for contents that were not covered by random vibration	Required for contents that were not covered by random vibration	Will not be done	Will be done in
Shock	Not required	Not required	uono	January
Thermal vacuum Cycle	Recommended	Recommended	TBD	
Thermal vacuum Bake-out	Not required – unless it is demanded prior to vacuum	Required		
Duration test	Not required, but	Not required, but		23

4. Testing

- Planned duration test December (flat sat)
- Planned vibration test End of January – Beginning of February
- Planned Thermal and thermal vacuum bake-out January

Shock test for structure: Passed!

5. Launch

First Launch opportunity came earlier than expected (2019 instead of 2020).

- Vector-R Rocket small launcher for payloads up to 65 kg.
 - Company: Vector [2]
- Orbit: Sun Synchronous;
- Expected Altitude: 350km;
- Orbital Lifetime of Delfi-PQ 150days;

Launch Service Provider: Alba Orbital

- Currently developing a deployer that can host 2 pocketqubes of 3P each (AlbaPOD^[3]);
- Shared Launched with Uncorn-2 (Alba Orbital's PocketQube);
- Placement of Delfi-PQ in deployer: top;
- Expected vibration testing end of January;
- Expected Integration in AlbaPOD end of February.

6. Future Work

- ✓ Create a complete baseline with up to date documentation, using Delfi-PQ;
- ✓ Next iterations to be done by students using the created baseline;
- ✓ Write and publish based on the same consortium
 the 2nd issue of the PocketQube Standard in order
 to help with the growth of the PocketQube
 Community

 ✓ TudeIft

 ✓ .

2nd PocketQube Workshop TU Delft

