

Development of OzQube-1

Stuart McAndrew

1st Asian PocketQube Workshop 5th Nov 2018

- Small early-stage startup based in Perth, Western Australia
- Co-founders: Stuart McAndrew and Conrad Pires
- Aim to develop space industry in Australia
- Focussing on new, small form factor satellites, including PocketQubes and Cubesats

Engineering

Flight

OzQube-1 Tech Demonstrator

A 1P PocketQube designed and built in (Western) Australia.

Main Mission Objectives:

- Validate core PocketQube subsystems (CDH, Comms, EPS)
- Capture colour images of Australia from space
- Transmit the images to people around the world

OzQube-1

Pico-satellite Technology Demonstrator Mission: Capture colour images of Australia

Key Features

- PQ60(ish) inside
- Separate PCB's for each subsystem (EPS, CDH, Comms, Camera payload)
- Simplified robust design
- Single Li-ion 800mAh (ish) cell (sandwiched between PCB's)
- Tape measure antenna

Command & Data Handling

- ATmega1284P Microcontroller (Was ATmega328p but needed more!)
- μSD and FRAM Data storage
- 9-Axis IMU (Only 6 useful in orbit!)
- External Watchdog
- RTC
- Connects to comms via SPI + GPIO, EPS via I2C + direct GPIO

Picosat Systems

EPS

- Hole in the middle for camera lens
- 4 channel MPPT(+X, -X, -Y separate, +Z and –Z on single channel with blocking diodes on each panel)
- Single BCR (Battery Charge Regulator)
- Temp controlled Battery charging
- PowerPath for battery bus (Maintains 3.6V if battery failed or low)
- 3.3V Bus and 1 switched 3.3v circuit for payload (that's why PQ60ish)
- All power circuits have current limiting and overload protection
- V + I telemetry from Bat and BCR output (not per panel as board space is limited!)

Picosat Systems

Comms

- Radio based on Silicon Labs Si4463 transceiver IC
- 70cm Amateur band
- Half-wave dipole tape measure antenna
- 1W / 30dBm output
- FSK 9600bps / 19200kbps
- Custom packet format (to be released before launch)
- Open uplink commands available to HAM operators (such as RSSI report, Telemetry dump)
- Reception with Arduino and Si4463 based radio (eg, RFM26W) Software based on RadioHead driver.

Camera

- Off-the-shelf UART camera Slightly modified
- Originally planned 2Mp, but 5Mp version now available!
- OV5642 + STM32 Micro
- Adapted to PQ60 board
- 25mm M12 Lens
- GSD
 - >34m @ 600km
 - >17m @ 300km
- JPEG images

ADCS

- Passive Magnetic Stabilisation
- Dual magnets to provide improved stability around roll axis
- Pointing downwards over southern hemisphere & Nadir over Australia
- No active control (Yet.....)
- Photodiode based sun sensor for basic solar angle determination
- Will experiment with images of stars to determine position

Lessons Learnt (so far)

- Easy to get scope creep (Try and stick to the plan)
- Lots and lots of little things matter
- There's always more to learn
- Radios are black holes of knowledge
- Some things are more expensive than you think (I'm talking about you conductive epoxy.....)

What's Next?

Platform Evolution

Technology Evolution

Deployable Solar (15 W, ~10W OAP)

High Power EPS

S-band 2Mbps

Mesh and Delay Tolerant networking

Evolved Star Tracker

Reflectarray Antenna

Optical Comms

Commercial Platform

2018-Jul-03 18:52:52 UTC

Lat : Lon: MLST: SZA:

Range: 12511.6 km Altitude : 12511.6 km Height: 0 meters Intersection Mode OFF 2018-Jul-03 18:52:59

Pidosagat 1010s at philips at 1010s at

Piricosta 11 Posta 90 MotobiA921

Picosat_110sat_9pl0.5ph.2.04

Picosat 1/10sat 9pl0.5ph6.131at 110sat 9pl0.5ph.3.06

Picosat_110sat_9pl0.5ph.5.05

Picosat_110sat_9pl0.5ph.9.12

Picosat_110sat_9pl0.5ph.8.10

Mercury

Picosat_110sat_9pl0.5ph.4.01 Picosat_110sat_9pl0.5ph.5.04

Picosat_110sat_9pl0.5ph.2.03

Picosat_110sat_9pl0.5ph.6.12

Picosat_110sat_9pl0.5plpic.08at_110sat_9pl0.5ph.3.05

Picosat_110sat_9pl0.5ph.1.11 Picosat_110sat_9pl0.5ph.7.09 Picosat_110sat_9pl0.5ph.3.04

Picosat_110sat_9pl0.5ph.9.01

Picosat_110sat_9pl0.5ph.1.12

Picosat_110sat_9pl0.5ph.8.11

Picosat_110sat_9pl0.5ph.5.03

Picosat_110sat_9pl0.5ph.2.02

Picosat_110sat_9pl0.5ph.6.01

Picosat 110sat 9pl0.5ph.1.07

Picosat_110sat_9pl0.5ph.4.12

Picosat_110sat_9pl0.5ph.9.02

Picosat_110sat_9pl0.5ph.5.02

Picosat_110sat_9pl0.5ph.2.icpsat_110sat_9pl0.5ph.8. Picosat_110sat_9pl0.5ph.1.08 Picosat_110sat_9pl0.5ph.6.02

Picosat_110sat_9pl0.5ph.4.11

Contact

Stuart McAndrew CTO & Cofounder

stuart@picosat.systems

Let us build your next picosatellite mission!

@picosatsystems

Extra Slides

